Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
A__2ND(cons1(X, cons(Y, Z))) → MARK(Y)
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
A__2ND(cons(X, X1)) → A__2ND(cons1(mark(X), mark(X1)))
A__2ND(cons(X, X1)) → MARK(X1)
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → MARK(X2)
MARK(2nd(X)) → A__2ND(mark(X))
MARK(cons1(X1, X2)) → MARK(X1)
A__2ND(cons(X, X1)) → MARK(X)

The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(s(X)) → MARK(X)
A__2ND(cons1(X, cons(Y, Z))) → MARK(Y)
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
A__2ND(cons(X, X1)) → A__2ND(cons1(mark(X), mark(X1)))
A__2ND(cons(X, X1)) → MARK(X1)
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → MARK(X2)
MARK(2nd(X)) → A__2ND(mark(X))
MARK(cons1(X1, X2)) → MARK(X1)
A__2ND(cons(X, X1)) → MARK(X)

The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.

MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
A__2ND(cons1(X, cons(Y, Z))) → MARK(Y)
MARK(cons(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
A__2ND(cons(X, X1)) → A__2ND(cons1(mark(X), mark(X1)))
A__2ND(cons(X, X1)) → MARK(X1)
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → MARK(X2)
MARK(2nd(X)) → A__2ND(mark(X))
MARK(cons1(X1, X2)) → MARK(X1)
A__2ND(cons(X, X1)) → MARK(X)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( cons(x1, x2) ) =
/0\
\0/
+
/11\
\00/
·x1+
/00\
\10/
·x2

M( from(x1) ) =
/0\
\1/
+
/11\
\10/
·x1

M( cons1(x1, x2) ) =
/0\
\0/
+
/10\
\00/
·x1+
/10\
\00/
·x2

M( a__2nd(x1) ) =
/0\
\1/
+
/11\
\11/
·x1

M( 2nd(x1) ) =
/0\
\1/
+
/11\
\11/
·x1

M( mark(x1) ) =
/0\
\0/
+
/10\
\01/
·x1

M( a__from(x1) ) =
/0\
\1/
+
/11\
\10/
·x1

M( s(x1) ) =
/1\
\0/
+
/10\
\00/
·x1

Tuple symbols:
M( A__2ND(x1) ) = 0+
[1,1]
·x1

M( MARK(x1) ) = 0+
[1,0]
·x1

M( A__FROM(x1) ) = 0+
[1,0]
·x1


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

mark(2nd(X)) → a__2nd(mark(X))
a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
mark(from(X)) → a__from(mark(X))
a__from(X) → cons(mark(X), from(s(X)))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__from(X) → from(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

MARK(from(X)) → MARK(X)
A__2ND(cons(X, X1)) → MARK(X1)
MARK(from(X)) → A__FROM(mark(X))
MARK(2nd(X)) → MARK(X)
MARK(cons1(X1, X2)) → MARK(X2)
A__2ND(cons1(X, cons(Y, Z))) → MARK(Y)
MARK(2nd(X)) → A__2ND(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
A__2ND(cons(X, X1)) → MARK(X)
A__2ND(cons(X, X1)) → A__2ND(cons1(mark(X), mark(X1)))

The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


MARK(from(X)) → MARK(X)
MARK(from(X)) → A__FROM(mark(X))
MARK(2nd(X)) → MARK(X)
MARK(2nd(X)) → A__2ND(mark(X))
The remaining pairs can at least be oriented weakly.

A__2ND(cons(X, X1)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X2)
A__2ND(cons1(X, cons(Y, Z))) → MARK(Y)
MARK(cons(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
A__2ND(cons(X, X1)) → MARK(X)
A__2ND(cons(X, X1)) → A__2ND(cons1(mark(X), mark(X1)))
Used ordering: Polynomial interpretation [25]:

POL(2nd(x1)) = 1 + x1   
POL(A__2ND(x1)) = x1   
POL(A__FROM(x1)) = x1   
POL(MARK(x1)) = x1   
POL(a__2nd(x1)) = 1 + x1   
POL(a__from(x1)) = 1 + x1   
POL(cons(x1, x2)) = x1 + x2   
POL(cons1(x1, x2)) = x1 + x2   
POL(from(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(s(x1)) = 0   

The following usable rules [17] were oriented:

mark(2nd(X)) → a__2nd(mark(X))
a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
mark(from(X)) → a__from(mark(X))
a__from(X) → cons(mark(X), from(s(X)))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__from(X) → from(X)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

A__2ND(cons(X, X1)) → MARK(X1)
A__2ND(cons1(X, cons(Y, Z))) → MARK(Y)
MARK(cons1(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X1)
A__FROM(X) → MARK(X)
A__2ND(cons(X, X1)) → MARK(X)
A__2ND(cons(X, X1)) → A__2ND(cons1(mark(X), mark(X1)))

The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

MARK(cons1(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__2nd(cons1(X, cons(Y, Z))) → mark(Y)
a__2nd(cons(X, X1)) → a__2nd(cons1(mark(X), mark(X1)))
a__from(X) → cons(mark(X), from(s(X)))
mark(2nd(X)) → a__2nd(mark(X))
mark(from(X)) → a__from(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(cons1(X1, X2)) → cons1(mark(X1), mark(X2))
a__2nd(X) → 2nd(X)
a__from(X) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ QDPOrderProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ UsableRulesProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

MARK(cons1(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(cons1(X1, X2)) → MARK(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: